menu
... Accidente nuclear de Chernobyl ...
Causas y consecuencias del accidente nuclear de Chernobyl
Bookmark and Share

Accidente nuclear de Chernobyl

El accidente nuclear de Chernobyl (1986) es, con diferencia, el accidente nuclear más grave de la historia de la energía nuclear. Fue clasificado como nivel 7 (accidente nuclear grave) de la escala INES, el valor más alto. Aunque es el mismo nivel en el que se clasificó el accidente nuclear de Fukushima, las consecuencias del accidente de Chernobyl fueron todavía mucho peores.

Mapa de la central nuclear de Chernobyl. Accidente nuclear de Chernobyl.La central nuclear de Chernobyl se encuentra junto a la ciudad de Prypyat, a 18km de la ciudad de Chernobyl.

En el momento del accidente la central nuclear Chernobyl disponía de 4 reactores en funcionamiento y dos más estaban en construcción.

En el 9 de septiembre de 1982, tuvo lugar una fusión parcial de la base en el reactor nº 1 de la planta. Aunque debido al secretismo de la Unión soviética, no se informó a la comunidad internacional hasta el 1985. Se reparó y continuó funcionando.

El accidente grave se produjo en 1986, cuando explotó el reactor número 4. Posteriormente, a pesar de la gravedad del accidente y debido a las necesidades energéticas los reactores 1, 2 y 3 siguieron en marcha.

El reactor nuclear 2 de Chernobyl se cerró en el 1991, el reactor 1 en el 1996 y el reactor tres dejó de funcionar en el 2000.

Video documental del accidente nuclear de Chernobyl

En mayo del 2014, un estudiante de Comunicación Audiovisual de la Universidad Complutense de Madrid, Álvaro Dorado, realizó un viaje a Ucrania para visitar la zona afectada por la central de Chernobyl y realizar el siguiente documental.

En el video, en una primera parte se explican las causas del accidente nuclear, como se gestionó el accidente en las horas y días posteriores. Posteriormente, el autor del documental se desplaza a la zona para mostrarnos la situación y el aspecto de abandono actual en la zona de exclusión.

CHERNOBYL - La Zona (Documental 2015)

Cronología del accidente de Chernobyl

Central nuclear de Chernobyl antes del accidente nuclear
La central nuclear de Chernobyl antes del accidente

El accidente nuclear de Chernobyl (Ucrania) se produce durante la noche del 25 al 26 de abril de 1986 en el cuarto reactor de la planta nuclear. Se trataba de un reactor nuclear que pertenece al tipo que los soviéticos llaman RMBK-1000,  refrigerado por agua y moderado por grafito.

Origen del accidente nuclear: la realización de una prueba

El motivo que desencadenó el accidente nuclear de Chernobyl fue la realización de una prueba programada para el día 25 de abril bajo la dirección de las oficinas centrales de Moscú.

Esta prueba tenía la intención de aumentar la seguridad del reactor. Se trataba de averiguar durante cuánto tiempo la turbina de vapor continuaría generando energía eléctrica una vez cortada la afluencia de vapor.

En caso de avería, las bombas refrigerantes de emergencia requerían de un mínimo de potencia para ponerse en marcha (hasta que se arrancaran los generadores diésel) y los técnicos de la planta desconocían si, una vez cortada la afluencia de vapor, la inercia de la turbina podía mantener las bombas funcionando.

La prueba debía realizarse sin detener la reacción en cadena en el reactor nuclear para evitar un fenómeno conocido como envenenamiento por xenón. Entre los productos de fisión que se producen dentro del reactor, se encuentra el xenón135, un gas muy absorbente de neutrones (los neutrones son necesarios para mantener las reacciones de fisión nuclear en cadena). Mientras está en funcionamiento de modo normal, se producen tantos neutrones que la absorción es mínima, pero cuando la potencia es muy baja o el reactor se detiene, la cantidad de 135Xe aumenta e impide la reacción en cadena por unos días. El reactor se puede reiniciar cuando se desintegra el 135Xe.

Inicio de la prueba

A la una de la madrugada del día 25 de abril, los ingenieros iniciaron la entrada de las barras de control en el núcleo del reactor nuclear con el objetivo de reducir su potencia.

Hacia las 23 horas se habían ajustado los monitores a los niveles más bajos de potencia. Pero el operador se olvidó de reprogramar el ordenador para que se mantuviera la potencia entre 700 MW y 1.000 MW térmicos. Por este motivo, la potencia descendió al nivel de 30 MW.

Con un nivel tan bajo, los sistemas automáticos pueden detener el reactor debido a su peligrosidad y por esta razón los operadores desconectaron el sistema de regulación de la potencia, el sistema de emergencia refrigerante del núcleo y otros sistemas de protección cuando el sistema ya estaba a punto de apagar el reactor nuclear.

Sala de control de la central nuclear de ChernobylCon 30 MW comienza el envenenamiento por xenón. Al darse cuenta se extrajeron las barras de control con el fin de evitarlo aumentado la potencia del reactor nuclear. Los operadores retiraron manualmente demasiadas barras de control. El núcleo del reactor disponía de 170 barras de control. Las reglas de seguridad exigían que hubiera siempre un mínimo de 30 barras bajadas y en esta ocasión dejaron solamente 8.

Dado que los sistemas de seguridad de la planta quedaron inutilizados y se habían extraído casi todas las barras de control, el reactor de la central quedó en condiciones de operación inestable y extremadamente insegura. En ese momento, tuvo lugar un brusco incremento de potencia que los operadores no detectaron a tiempo.

Cuando quisieron bajar de nuevo las barras de control usando el botón de SCRAM de emergencia, estas no respondieron debido a que posiblemente ya estaban deformadas por el calor y las desconectaron para permitirles caer por gravedad.

Finalmente, el combustible nuclear se desintegró y salió de las vainas, entrando en contacto con el agua empleada para refrigerar el núcleo del reactor. A la una y 23 minutos, se produjo una gran explosión, y unos segundos más tarde, una segunda explosión hizo volar por los aires la losa del reactor y las paredes de hormigón de la sala del reactor, lanzando fragmentos de grafito y combustible nuclear fuera de la central, ascendiendo el polvo radiactivo por la atmósfera.

Se estima que la cantidad de material radiactivo liberado fue 200 veces superior al de las bombas atómicas lanzadas sobre Hiroshima y Nagasaki al final de la Segunda Guerra Mundial.

Accidente nuclear Chernobyl

El accidente nuclear fue clasificado como nivel 7 (“accidente nuclear grave”) en la Escala Internacional de Sucesos Nucleares (Escala INES) del Organismo Internacional de la Energía Atómica (OIEA). Se trata del nivel más alto posible, es decir, el accidente de peores consecuencias ambientales.

Consideraciones políticas, sociales y técnicas previas al accidente nuclear de Chernobyl

Aunque el accidente tuvo lugar por un claro error humano, hay que tener en cuenta los factores sociales y políticos de la Unión Soviética en aquel momento. La falta de una estructura social democrática implicaba una ausencia de control de la sociedad sobre la operación de las centrales nucleares y de una “cultura de seguridad”. Posiblemente, el temor de los operadores a no cumplir las instrucciones recibidas desde Moscú, les llevó a desmontar los sistemas de seguridad esenciales para el control del reactor.

Tampoco existía ningún Órgano Regulador de la Seguridad Nuclear que llevase a cabo con autoridad propia e independencia la inspección y evaluación de la seguridad de las instalaciones nucleares.

En cuanto a los aspectos técnicos de seguridad del reactor nuclear, hay que tener en cuenta que en los reactores RMBK no existe ningún sistema de confinamiento que cubra el circuito primario y tampoco hay edificio de contención capaz de retener los productos de fisión en caso de accidente, como ocurre en los reactores occidentales.

Consecuencias del accidente nuclear de Chernobyl

El accidente nuclear dio lugar a un posterior incendio, que no se consiguió apagar hasta el 9 de mayo. Este incendio aumentó los efectos de dispersión de los productos radiactivos, y la energía calorífica acumulada por el grafito todavía dio mayor magnitud al propio incendio y a la dispersión atmosférica.

De los productos radiactivos liberados eran especialmente peligrosos el yodo-131 (cuyo período de semidesintegración es de 8,04 días) y el cesio-137 (con un período de semidesintegración de unos 30 años), de los cuales, aproximadamente la mitad, salieron de la cantidad contenida en el reactor nuclear. Además, se estimó que todo el gas xenón fue expulsado al exterior del reactor. Estos productos se depositaron de forma desigual, dependiendo de su volatilidad y de las lluvias durante esos días.

Los más pesados se encontraron en un radio de 110 km, y los más volátiles alcanzaron grandes distancias. Así, además del impacto inmediato en Ucrania y Bielorrusia, la contaminación radiactiva alcanzó zonas de la parte europea de la antigua Unión Soviética, y de Estados Unidos y Japón.

Programa Internacional sobre los Efectos en la Salud del Accidente de Chernobyl

Para determinar los efectos de la radiación sobre la salud de las personas, la Organización Mundial de la Salud desarrolló el IPHECA (Programa Internacional sobre los Efectos en la Salud del Accidente de Chernobyl), de modo que pudieran investigarse las posibles consecuencias sanitarias del accidente. Estas consecuencias incluían efectos relacionados con la ansiedad producida en los habitantes de las zonas más contaminadas como resultado de la evacuación de sus casas, y del miedo a posibles daños futuros en la salud por los efectos biológicos de la radiación. Además, el programa proporcionaba asistencia técnica al sistema sanitario nacional de Bielorrusia, a la Federación Rusa y a Ucrania, para aliviar las consecuencias sanitarias del accidente de Chernobyl.

Contaminación de aliementos en ChernobylLos resultados obtenidos con los proyectos piloto IPHECA han mejorado considerablemente el conocimiento científico de los efectos de un accidente radiactivo en la salud humana, para que puedan sentarse las bases de las guías de planificación y del desarrollo de futuras investigaciones.

Las consecuencias inmediatas del accidente sobre la salud de las personas fueron las siguientes:

* 237 personas mostraron síntomas del Síndrome de Irradiación Aguda (SIA), confirmándose el diagnóstico en 134 casos. 31 personas fallecieron durante el accidente, de las cuales, 28 (bomberos y operarios) fueron víctimas de la elevada dosis de radioactividad, y 3 por otras causas. Después de esta fase aguda, 14 personas más han fallecido en los diez años posteriores al accidente.

* Entre 600.000 y 800.000 personas (trabajadores especializados, voluntarios, bomberos, militares y otros) llamadas liquidadores, encargadas de las tareas de control y limpieza, fallecidas en distintos períodos.

* 16.000 habitantes de la zona fueron evacuados varios días después del accidente, como medida de protección frente a los altos niveles de radioactividad, estableciéndose una zona de exclusión en los territorios más contaminados, en un radio de 30 km alrededor de la instalación.

* 565 casos de cáncer de tiroides en niños fundamentalmente (de edades comprendidas entre 0 y 14 años) y en algunos adultos, que vivían en las zonas más contaminadas (208 en Ucrania, 333 en Bielorrusia y 24 en la Federación Rusa), de los cuales, 10 casos han resultado mortales debido a la radiación.

* Otros tipos de cáncer, en particular leucemia, no han registrado desviaciones estadísticamente significativas respecto a la incidencia esperada en condiciones normales.

* Efectos psicosociales producidos por causas no relacionadas con la radiación, debidos a la falta de información, a la evacuación de los afectados y al miedo de los efectos biológicos de la radiación a largo plazo. Estos efectos fueron consecuencia de la reacción de sorpresa de las autoridades nacionales ante el accidente nuclear de Chernobyl, en cuanto a la extensión, duración y contaminación a largas distancias. Como los procedimientos de emergencia eran inexistentes, había poca información disponible, haciéndose notar la desconfianza y la presión pública para que se tomaran medidas, pero las decisiones oficiales no tuvieron en cuenta los efectos psicológicos de la población, llevándose a cabo interpretaciones erróneas de las recomendaciones de la International Commission On Radiological Protection (ICRP) para los niveles de intervención de los alimentos. Todo esto se vio traducido en un importante número de alteraciones para la salud, como ansiedad, depresiones y varios efectos psicosomáticos. La Organización Mundial de la Salud (OMS) compró equipos y suministros médicos para los 3 países (Bielorrusia, Federación Rusa y Ucrania) por valor de cerca de 16 millones de dólares. El resto de los gastos de los proyectos piloto se dedicó a ayudas a los programas, reuniones científicas, cursos de entrenamiento en instituciones extranjeras de investigación y en instituciones clínicas para 200 especialistas, y a proporcionar capital para continuar con las actividades del programa IPHECA. 

Según la Agencia de Energía Atómica (NEA) de la OECD, los rangos de dosis de radiación, recibidos por los distintos grupos, fueron los siguientes:

* Liquidadores: del total de los liquidadores, unos 200.000 recibieron dosis variables desde 15 a 170 milisievert (mSv).

* Evacuados: las 116.000 personas evacuadas, la mayor parte de un radio de acción de la central de 30 km, recibieron dosis altas (el 10% más de 50 mSv y el 5% más de 100 mSv), especialmente en el tiroides por incorporación de yodo-131. La zona más evacuada fue Prypiat, a 2 km escasos de la central nuclear de Chernobyl, convirtiéndose en una “ciudad fantasma” al abandonar la ciudad las 60.000 personas que vivían allí.

* Habitantes de las áreas contaminadas: alrededor de 270.000 personas continuaron viviendo en áreas contaminadas, de modo que los niños recibieron altas dosis en tiroides, debido a la ingestión de leche contaminada con yodo-131 durante las primeras semanas después del accidente. Tras el control de los alimentos, durante el período 1986-1989, el rango de dosis de cesio-137 en el suelo fue de 5 a 250 mSv/año, con una media de 40 mSv/año.

*Resto de la población: los materiales radiactivos volátiles se extendieron por todo el Hemisferio Norte, aunque las dosis recibidas por la población fueron muy bajas y carecen de importancia desde el punto de vista de la protección radiológica. Las dosis de radiación, durante el primer año, oscilaron en Europa entre 0,005 y 0,5 mSv, en Asia entre 0,005 y 0,1 mSv, y en el Norte de América fueron del orden de 0,001 mSv.

Situación actual y perspectivas de futuro de Chernobyl

 

Durante los siete meses siguientes al accidente, los restos del reactor nuclear 4 accidentado fueron enterrados por los liquidadores, mediante la construcción de un “sarcófago” de 300.000 toneladas de hormigón y estructuras metálicas de plomo para evitar la dispersión de los productos de la fisión nuclear. En principio, este sarcófago fue una solución provisional y debía estar bajo estricto control dada su inestabilidad a largo plazo, ya que podía producirse un hundimiento.

La recuperación de la zona del accidente y de los productos de limpieza ha dado lugar a una gran cantidad de residuos radiactivos y equipos contaminados, almacenados en cerca de 800 sitios distintos dentro y fuera de la zona de exclusión de 30 km alrededor del reactor nuclear 4 de Chernobyl.

Estos residuos nucleares se encuentran parcialmente almacenados en contenedores o enterrados en trincheras, pudiendo provocar riesgo de contaminación de las aguas subterráneas.

Se ha evaluado que el sarcófago y la proliferación de los sitios de almacenamiento de residuos representan una fuente de radioactividad peligrosa en las áreas cercanas, y algunos expertos de la NEA temían que el hundimiento del reactor accidentado ocasionara graves daños en el único reactor en funcionamiento hasta el 15 de diciembre de 2000, el reactor 3.

Las siguientes imágenes corresponden a el aspecto de abandono que tiene actualmente la ciudad de Prypyat, la ciudad más cercana a la central nuclear.

Estado actual en Chernobyl después del accienteEstado actual en Chernobyl después del accienteEstado actual en Chernobyl después del accienteEstado actual en Chernobyl después del acciente

Conferencia Internacional de Viena

En la Conferencia Internacional de Viena, celebrada en abril de 1996, se concluyó que la rehabilitación total de la zona no era posible debido a la existencia de “puntos calientes” de contaminación, de riesgos de contaminación de aguas subterráneas, de restricciones en los alimentos y de riesgos asociados al posible colapso del sarcófago, dado su deterioro en los años siguientes al accidente. Se apuntó que era necesario llevar a cabo un completo programa de investigación para desarrollar un diseño adecuado que constituyera un sistema de confinamiento seguro desde el punto de vista ecológico, evitando las filtraciones de agua de lluvia en su interior y evitando el hundimiento del sarcófago existente, lo que provocaría el escape de polvo radiactivo y de los restos de combustible nuclear (uranio y plutonio) al medio ambiente.

Programas de ayuda internacional

Ante esta situación, las autoridades y la industria nuclear de los países occidentales están realizando esfuerzos notables para ayudar a los países del Este a mejorar la seguridad de sus reactores, incluyendo los RMBK, y se puede decir que en la actualidad, la situación de estos países es mucho mejor que en el año 1986.

 Entre los programas de ayuda de la Unión Europea destacan los programas TACIS (1989) y PHARE (1990). Todas las contribuciones económicas se transfieren a un fondo gestionado por el BERD (Banco Europeo de Reconstrucción y Desarrollo) conocido como “Chernobyl Shelter Fund (CSF)” o “Fondo de Protección de Chernobyl”. El BERD administrará el fondo en nombre de los países contribuyentes y donantes, siendo responsable ante la Asamblea que se reúne 3 o 4 veces al año. En la actualidad, cuenta con 22 miembros, entre ellos la Unión Europea y Ucrania.

El Programa TACIS financió, en 1996, un primer estudio con el objetivo de analizar, en una primera fase, las posibles medidas a corto y largo plazo, para remediar la deplorable situación del sarcófago, y transformarlo finalmente en un emplazamiento seguro.

En un principio, había dos alternativas: enterrar el sarcófago en un bloque de hormigón y construir un nuevo recinto que cubriera completamente el reactor 4 accidentado y el reactor 3.

En mayo de 1997, un grupo de expertos europeos, americanos y japoneses, financiados por el programa, prepararon el SIP (Shelter Implementation Plan - Plan de Ejecución del Sistema de Protección). Los objetivos del plan para convertir el sarcófago en un emplazamiento seguro fueron los siguientes:

* Reducir el riesgo de hundimiento del sarcófago.

* En caso de hundimiento, limitar las consecuencias.

*Mejorar la seguridad nuclear del sarcófago.

* Mejorar la seguridad de los trabajadores y la protección ambiental en el sarcófago.

* Convertir el emplazamiento del sarcófago en una zona segura desde el punto de vista medioambiental.

 Además, el SIP estableció tres hitos a conseguir:

* Decisión estratégica a seguir en cuanto a la estabilidad y la protección.

*Estrategia a seguir en cuanto al problema del combustible dañado y esparcido por el interior del sarcófago.

* Decisión del nuevo tipo de recinto a construir.

Sacròfag en construcció per cobrir els reactors 3 i 4 de la central nuclear de Chernobyl.De acuerdo con el programa, el proyecto debía estar finalizado en 2007. Hasta mayo de 2001, se llevaron a cabo las tareas de estabilización y otras medidas a corto plazo, constituyendo la primera fase del SIP. También se realizaron los estudios técnicos preliminares necesarios para determinar una estrategia de mejora de los sistemas de seguridad y preparar, en una segunda fase, el sarcófago como emplazamiento seguro.

En cuanto al tipo de recinto de protección, se decidió finalmente construir un amplio arco de bóveda metálico en cuyo interior quedaría la unidad 4 dañada, ya que ofrecía muchas ventajas en cuanto a la reducción de las dosis de irradiación, la seguridad durante la construcción, la liberación de las actuales estructuras inestables, un mayor espacio para el desmantelamiento y la flexibilidad necesaria para hacer frente a las incertidumbres de retirada del combustible dañado y disperso.

Este arco abovedado metálico, en construcción desde 2002 y hasta 2005, con un coste de 700 millones de dólares, albergará las unidades 3 y 4 de la central de Chernobyl, bajo su muro impermeable de doble pared presurizada internamente y con una cimentación de 27 metros de profundidad.

La unidad 3 de la central de Chernobyl, se paró definitivamente el 15 de diciembre de 2000. Tanto los expertos ucranianos como los extranjeros, fijaron el coste del cierre entre 2.000 y 5.000 millones de dólares, hasta retirar el combustible radiactivo que quede en la central con fecha límite en 2008. Esta decisión completó el cierre total de la instalación nuclear que había dado lugar, el 26 de abril de 1986, a la mayor catástrofe nuclear de la historia de la energía nuclear.

Cierre progresivo de los otros tres reactores nucleares de Chernobyl

Monumento a las víctimas del accidente nuclear de la central nuclear de Chernobyl

A pesar del grave accidente nuclear del reactor nuclear 4 de Chernobyl, debido a las necesidades energéticas los reactores 1, 2 y 3 siguieron en marcha.

En 1991 se incendió una turbina del reactor nuclear número 2. Se pensó en repararla utilizando una de las turbinas del reactor 4 que no resultaron dañadas. Pero por aquel entonces, el contexto político había variado que junto con la presión popular provocó el cierre definitivo del reactor 2.

El reactor 1 dejó de funcionar el 31 de noviembre de 1996, tras graves deficiencias de la refrigeración que dieron lugar a un incidente nuclear de nivel 3 en la Escala INES.

Finalmente, el tercer reactor nuclear de Chernobyl se cerraría poco más tarde, el 15 de diciembre de 2000. El reactor nuclear 3 había tenido ya varios incendios y la estructura estaba afectada por la corrosión. Tras prolongadas negociaciones con el gobierno ucraniano, la comunidad internacional financió los costes del cierre definitivo de la central. Esto fue en diciembre del 2015.

Referencias

Última revisión: 10 de julio de 2015

Bookmark and Share
Inicio | CA | EN | FR | DE | PT